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ABSTRACT 

This thesis examines the feasibility of parametrically exciting a mode of an 

acoustic resonator. Such excitation may result in substantially larger amplitudes than by 

direct excitation, and would thus be useful in acoustic devices that require high-amplitude 

standing waves. Parametric excitation of a mode occurs if the natural frequency is 

modulated at twice its value, and if the drive amplitude is above a threshold value due to 

dissipation. It is theoretically shown to be possible to excite the fundamental longitudinal 

mode of a pipe of any length filled with sulfur hexafluoride if the length is modulated 

with an Electrovoice EVX-150A driver. For carbon dioxide, excitation is predicted to 

occur if the pipe is longer than 1.2 meters. Also investigated is parametric excitation of 

the fundamental radial mode of a cylindrical cavity by modulating the height and thus the 

temperature. In this case, no driver was found to be capable of exceeding the threshold, 

regardless of the gas. Use of an electromagnetic wave source to modulate the 

temperature was also considered as a means of parametrically exciting the fundamental 

radial mode. Preliminary investigations show that sufficient heat conduction cannot 

occur over an acoustic cycle, indicating that this method is infeasible. 
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I.       INTRODUCTION 

Parametric excitation is the excitation of a resonant mode of a system by 

modulation of the value of a parameter upon which the frequency of the mode is 

dependent. This phenomenon can be more succinctly described as the excitation of a 

system at half the frequency with which a parameter is modulated. In order for parametric 

excitation to occur, the parameter must be modulated with an amplitude that is greater 

than a threshold value determined by the dissipation in the system. The mode then grows 

exponentially until limited by a nonlinearity of the system. Although the steady state 

response of a mode to parametric excitation is a nonlinear process, the onset of 

parametric excitation can be described using a linear system. 

Perhaps the first recorded observation of parametric excitation was by the British 

physicist Michael Faraday (1831). A cylindrical container of water, which was caused to 

oscillate vertically, was found to have waves produced on the surface. Faraday observed 

that these surface waves had a frequency equal to one half the vertical oscillation 

frequency. Faraday's experiments were later duplicated and given a mathematical 

treatment by Lord Rayleigh (1883), who wrote, "Faraday arrived experimentally at the 

conclusion that there were two complete vibrations of the support for each complete 

vibration of the fluid." Another observation of parametric excitation was made by Melde 

(1859), who attached one end of a string to a prong of a tuning fork and the other end to a 

rigid structure. The string was attached to the tuning fork such that the tuning fork 

vibrated in a direction parallel to the length of the string, so that the tension was 

modulated. Melde was able to obtain transverse vibrations at frequency/when the tuning 
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fork was vibrated at frequency 2f. In 1887, Rayleigh utilized the work of Hill (1886) to 

provide an analysis of Melde's work and a second mathematical explanation of Faraday's 

vertically oscillating cylinder. 

An electromechanical example of parametric excitation was given by Lord 

Rayleigh (1945) in 1894. In The Theory of Sound, Rayleigh describes a "...pendulum, 

formed of a bar of soft iron and vibrating upon knife edges. Underneath is placed 

symmetrically a vertical bar electro-magnet, through which is caused to pass an electric 

current rendered intermittent by an interrupter whose frequency is twice that of the 

pendulum." Parametric excitation can also be observed in the electromagnetic equivalent 

of the spring oscillator. An oscillating current can be generated in a series LRC circuit 

containing an inductor L, capacitance C, and resistance R by periodically varying the 

capacitance or inductance. The capacitance can be varied by varying the distance 

between the plates of a parallel plate capacitor. Likewise, the inductance can be varied by 

periodically moving a core in and out of a coil. Mandelstam et al. (1935) varied the 

inductance by spinning a metal chopper wheel between the coils. Wright and Swift 

(1990) modulated the inductance by vibrating the bottom piece of a two-piece iron-core 

conductor. This vibration in turn modulated the air gap between the upper and lower 

pieces and hence the inductance. Utilizing this technique, large current amplitudes were 

produced. 

The physical principle of parametric excitation in electrical and mechanical 

systems is fairly well understood. Parametric excitation is based on an external force 

pumping energy into a system. If the work done on the system  during one half of the 

cycle is greater than the energy lost due to dissipation, then the mode will continue to 
2 



grow until it is limited by nonlinear effects. An advantage of parametrically exciting an 

acoustic mode is the possibility of achieving large response amplitudes that may be 

useful in thermoacoustic refrigerators, acoustic compressors, and acoustic pumps. The 

standard method of generating large acoustic amplitudes is by direct excitation with 

electromagnetic dynamic transducers. The typical means of increasing the amplitude of a 

sound wave is to increase the displacement of the electromagnetic driver. However, the 

driver is ultimately limited by one of two major limitations: thermal limit or displacement 

limit. The displacement limit occurs because of distortion or from the diaphragm parts 

being damaged by collision with the magnet or frame, or from exceeding the elastic limit 

of the suspension. The thermal limit is based on the material or the heat transfer 

capability of the voice coil of the driver. For a parametric drive, the drive is simply 

increased beyond the threshold value. Once the threshold is reached, the amplitude of the 

acoustic mode is amplified and is only limited by the nonlinearities of the system. 

The nonlinearity that saturates the growth may arise from the oscillator or from a 

nonideal driving mechanism. The nonlinearity from a nonideal driving mechanism can 

occur in physical systems where the large response amplitude of the oscillator reduces the 

drive amplitude. Parametric drives may offer a practical advantage over direct drives in 

these situations. For example, if we consider a fixed response amplitude of a system, 

energy conservation implies that the same power input is required of a parametric drive 

as compared to a direct drive. If the directly driven oscillations are limited by the 

maximum excursion of an electromechanical driver, parametrically driven oscillations 

may be limited by the maximum current, which can lead to a greater power input and 

thus greater response amplitude. 



In this thesis, we examine the feasibility of achieving parametric threshold in 

acoustic resonators. Specifically, we examine cylindrical acoustic resonators in which 

the length or height is modulated. Use of a microwave source to modulate the 

temperature is also considered. Parametric excitation has been achieved in a one- 

dimensional ultrasonic resonator by modulation of the cavity length (Adler and 

Breazeale, 1970), although not with the aim of achieving large amplitudes. Geometric 

modulation of Heimholte resonators was studied by Prather (1999), who showed that 

geometric modulation of the resonator leads to turbulence which raises the threshold of 

parametric excitation to levels beyond that which can be readily attained. 

The parametrically excited pendulum is discussed in Chapter II to provide a 

mathematical and physical description of parametric excitation. Chapter II also outlines 

the basic theory of parametric excitation as applied to a straight pipe and cylindrical 

cavity. The straight pipe refers to a cylinder in which the length is modulated in order to 

parametrically excite the fundamental longitudinal mode. The cylindrical cavity refers to 

a cylinder in which the height is modulated in order to parametrically excite the 

fundamental radial mode. Chapter III provides an analysis of modulating the length of a 

straight pipe while Chapter IV examines modulating the temperature of a cylindrical 

cavity by compressing the enclosed gas. In Chapter V, we consider the possibility of 

modulating the temperature of a gas by absorption of electromagnetic waves (for 

example, from a magnetron). Chapter VI discusses the conclusions and 

recommendations for future work. 



II.     BASIC PARAMETRIC EXCITATION THEORY 

A.        PARAMETRICALLY DRIVEN PENDULUM 

The standard system for a theoretical discussion of parametric excitation is the 

pendulum whose length is periodically varied as shown in Fig. 2.1. If the net work done 

by the external force modulating the pendulum's length is greater than zero, then the 

amplitude of the pendulum increases. How energy is pumped into the system can be 

understood by calculating the work done by the external force over one oscillation of the 

pendulum. Following Chow (1995), the pendulum's length L is allowed to increase by a 

small amount AL when the pendulum is at its extreme position and the length is allowed 

to decrease by the same amount when the pendulum is in its vertical position. The work 

done by the external force when the pendulum is at its extreme position is 

W = -mg(cosQ0)AL . (2.1) 

where m is the pendulum mass, g is the acceleration due to gravity and 90 is the 

pendulum's angle amplitude with respect to vertical. When the pendulum is vertical, the 

external force works against the weight of the mass and against the centrifugal force. 

Thus, the work done when the pendulum is vertical is 

W = mgAL + mALv2
01L0, (2.2) 

where v0 is the pendulum's velocity at the vertical position and L0 is the ambient length 

of the pendulum. Combining Equations (2.1) and (2.2), the net work done by the external 

force over one cycle can be expressed as 



W = 2 [mgALQ. - cos 60) + mALv2
01L]. (2.3) 

If we assume that 9 is small, then cos 0O = 1 -^90
2, and v0 = ©0Z,0 sin 0O = co0Z0G0, where 

©o = yJg/Lo is me pendulum's frequency of oscillation. With these approximations Eq. 

(2.3) becomes 

Wm6ff- (2-4) 

Thus, we see that the net work done by the pendulum is positive and is proportional to the 

energy of the pendulum. The rate at which energy is pumped into the system can be 

written as dEldt = 2aE where a is an amplification constant. This differential equation 

is valid for weak drives where the rate of energy change per cycle is small. If a is 

sufficiently large such that the work done on the system is larger than the energy 

dissipated by the system, then the amplitude of the response will grow exponentially with 

time: Nonlinear effects will act to limit the amplitude of the response and the pendulum 

will achieve a steady state amplitude. 



e0 \ 
\   Lri 

AL     H    /        I ! 
\ 

Figure 2.1.     A parametric pendulum with periodically varying length. 

The equation of motion for a parametrically excited system can be placed in a 

form known as the Mathieu equation, which can be written as 

x(t) + ©o (1 + T| cos (üDt)x(t) = 0, (2.5) 

where x is the displacement, x is the acceleration, t is the time, co0 is the natural linear 

frequency, a>D is the drive frequency, and r\ is the dimensionless drive amplitude. 

Equation (2.5) is a linear differential equation that neglects the effects of dissipation. 

Note that Eq. (2.5) reduces to the equation for the simple harmonic oscillator for 

vanishing r\. 

Following Pinto (1993), the pendulum with periodically varying length can be 

placed in the form of the Mathieu equation. If we assume a polar coordinate system in 

which r is the radial coordinate and 9 is the azimuthal coordinate, then r(t) = L(t). The 
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pendulum length can be expressed as L(f) = L0 + AL cos coDt. Newton's second law in 

polar coordinates is 

F = m[(r-r02)r + (re + 2r9)e], (2.6) 

where F is the force, the dots denote differentiation with respect to time, and the carat 

denotes unit vectors. The angular component of Newton's second law in Eq. (2.6) 

becomes 

-gsin0 = r0 + 2re, (2.7) 

where -gsinO is the acceleration in the azimuthal direction. Substituting the first and 

second derivatives of r into Eq. (2.7) and rearranging yields 

(L0 + AL cos (oDt) G - 2(oDAL sin (oDtQ + g sin 6 = 0. (2.8) 

For small oscillations, Eq. (2.8) becomes 

(l + ricos©^)e-2r|((öö)sinco^e+—6 = 0, (2.9) 
A> 

where we have divided through by L0 and replaced AL/L0 with the dimensionless 

parametric drive amplitude r|. Pinto (1993) states that Eq. (2.9) can be cast into 

Mathieu's equation by making the substitution b, = {l + r\cos(0Dt)Q. Evaluating and 

retaining only first order terms, we have verified that Eq. (2.9) becomes 

| + ©o(l + ricos(v)£ = 0 (2.10) 

where G>
2

0 is equal to g/L0, the natural frequency of the pendulum. 



B.       CHARACTERISTICS OF PARAMETRIC EXCITATION 

Although the linear Mathieu equation (Eq. (2.5) cannot be solved in closed form, 

its solutions, called Mathieu functions, have been studied extensively. A detailed study 

of Mathieu functions is beyond the scope of this thesis. However, the behavior of these 

functions provides an understanding of the subtleties of parametric excitation. The 

following characteristics of parametric excitation have been studied in detail by 

Bogoliubov and Mitropolsky (1961). 

The first characteristic is that parametric excitation can occur when the following 

condition for the drive frequency is met: 

u>„=2a>0/w, (2.11) 

where co0 is the fundamental frequency of the excited mode and » = 1,2... However, as 

n increases, less energy is delivered to the oscillator by the external force. In this thesis, 

only the principal parametric resonance is considered (« = 1) due to its lower threshold 

value. 

A second characteristic is that parametric excitation not only occurs at frequencies 

given by Eq. (2.11) but also in a range of frequencies around ©„. This behavior is 

depicted in Fig. 2.2. As the dimensionless parametric drive amplitude is increased, this 

frequency band becomes larger. The region in which parametric excitation occurs is the 

instability region. As the order of the parametric resonance increases, parametric 

excitation occurs over a smaller frequency band for a given drive value. 



Figure 2.2 shows the behavior for a dissipative and non-dissipative system. The 

effect of dissipation is to raise the threshold value. For the principal parametric 

resonance, the threshold value has been shown to equal 21Q, where Q is the quality factor 

of the excited mode. Thus, we see that a system with a small quality factor (large 

dissipative losses) will have a higher parametric threshold value. It can also be seen that 

for a given quality factor, the parametric threshold value increases as the order of the 

parametric resonance n increases. 

Figure 2.2. 

'o o 
frequency of modulation ©D 

Sketch showing the regions of parametric excitation in a dissipative and 
non-dissipative system. 
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C.       THEORY OF LENGTH MODULATION 

We consider a closed pipe of length LQ. If the pipe is uniform, the natural 

frequencies of the modes are ©„ = nncIL0, where n = 1, 2, 3... Because the frequency 

depends upon the length, it would appear possible to parametrically excite a mode if the 

length is appropriately modulated. We thus consider the length 

L(t) = L0+ALcos(2<öt), (2.12) 

where AL is the peak drive displacement amplitude and 2© is the drive frequency. For 

definiteness, we consider the fundamental (n =1) mode of the pipe. So that the drive does 

not directly excite the second mode, we imagine that the pipe has been detuned. This can 

be accomplished, for example, by a small constriction or enlargement at the center. This 

will respectively decrease or increase the natural frequency of the fundamental mode but 

will leave the frequency of the second mode approximately the same (Denardo and 

Alkov, 1994; Denardo and Bernard, 1996). 

For a weak drive (AL «; L0), the frequency of the mode is modulated according to 

©0[l-(AL/I0)cos2atf], where co0 is the natural frequency of the fundamental mode 

(which is (O^TIC/LQ for no detuning). For the ends of the pipe at x = 0 and 

approximately x = L0, the displacement of the gas in the pipe is approximately of the form 

% = f(t)sin(wc/L0) for a weak drive. Due to the frequency modulation, the equation of 

motion for the amplitude f(t) is expected to be the Mathieu equation 

^+o>J[l-Ticos(2atf)]/ = 0> (2.13) 
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where the dimensionless drive amplitude is r\ = 2AL/L0. In the presence of dissipation, 

the condition for parametric excitation is r\ > 21Q when © = ©0, where Q is the quality 

factor of the mode.  Hence, the condition for parametric excitation of the fundamental 

mode of a straight resonator by length modulation is 

AL/L0>l/Q. (2.14) 

That is, the drive threshold for © = Cö0 is AL IL0 = 1 / Q. 

A proper derivation of the Mathieu equation (Eq. (2.13)) would begin with the 

wave equation for the gas in the pipe. As we now show, Adler and Breazeale (1970) 

offer such a derivation, although they make several mistakes. The natural way to attempt 

to solve the problem is to impose the moving boundary condition on a general solution of 

the wave equation. However, this can be readily shown to only lead to the well-known 

solution corresponding to direct excitation. 

The displacement Z,(x,t) of the gas in the pipe satisfies the wave equation 

dt2       dx 2-^-J = 0. (2.15) 

The ends of the pipe are taken to be at x = 0 and x = L(t). Adler and Breazeale posit the 

following form of the displacement: 

$(*,0 = /(0sin 
7CC 

(2.16) 

where we have specialized to the fundamental mode (n = 1 in the argument nnx/L(t) of 

the sine).   For convenience, we hereafter designate fit) by / and L(t) by L.   Equation 
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(2.16) satisfies the boundary condition at x = 0, and Adler and Breazeale state that it also 

satisfies the boundary condition at x = L.   That is, £„(0,t) = £,(L,t) = 0.   However, the 

latter boundary condition is t,(L,t) = L-L0 for the boundary displacement given in Eq. 

(2.12). More generally, the particle velocity at the end equals the velocity of the end of 

the pipe: d^{L,t) Idt - dL I dt. The displacement according to Eq. (2.16) can thus at 

most be justified for a weak drive. 

Substitution of Eq. (2.16) into the wave equation (Eq. (2.15)) leads to 

/+ 
c % 2   2 

- 71   X      f2   r sin 
'TDC^ 

VW   L 
Lf + 2Lf-irL2f 

2-n 
L2 

TVC f 
-cos f... (2.17) 

where the dots denote time differentiation. The L f term in the coefficient of the cosine 

term is absent in Adler and Breazeale's treatment, but this has no consequence due to 

their eventual approximation of a weak drive. Adler and Breazeale state that the 

coefficients of the sine and cosine in Eq. (2.17) must each vanish due to the orthogonality 

of these functions. However, this is incorrect due to the presence of the spatial 

dependence. To proceed correctly, we must now assume that the drive is weak. 

Neglecting the quadratic terms in L in Eq. (2.17) results in 

V        -^      J 

sm J-(i/ + 2Z/)^cos(^) = P. (2.18) 

The spatial dependence is still present in the cosine term. However, if we multiply Eq. 

(2.18) by cos(nx/L), integrate from x = 0 to x = L, and use the orthogonality of the sine 

and cosine, we conclude that the coefficient of the cosine term must vanish: 
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Lf+2Lf = 0. (2.19) 

It then follows from Eq. (2.18) that the coefficient of the sine term must vanish: 

C 71 
/+—f-/ = 0. (2.20) 

Substituting Eq. (2.12) for L and retaining only linear terms in AL due to the assumption 

of weak drive, yields the Mathieu equation (Eq. (2.13)), where ®0 = nc/L0 and 

T) = 2AL/L0. 

Equation (2.19) must also be satisfied. Adler and Breazeale claim that the 

equation has a solution that coincides with a solution of Mathieu's equation, which does 

not appear to be true. For / = A sin at + B cos (ot +{smaller-amplitude higher harmonics} 

and L given by Eq. (2.12), Adler (1969) shows that Eq. (2.19) is satisfied for first-order 

terms which have frequency ©. Because the analysis is only valid to this order, Eq. 

(2.19) is then satisfied. This is readily confirmed to be true. 

For a weak drive with © approximately equal to a)0, it must be true that/is 

approximately given by the expression in the previous paragraph. Furthermore, Eq. 

(2.18) is satisfied for all/in the absence of a drive (Z = 0 for all time). However, the 

equation can be separated and thus exactly solved: 

m-mm- (2-2i> 
which shows that / diverges at points in time when L = 0.   For the standard length 

modulation (Eq. (2.12)), this occurs twice each cycle of the drive and thus four times 
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each cycle of the response. Furthermore, this occurs regardless of the smallness of the 

drive amplitude, as long as it is not zero. Such a solution clearly contradicts the correct 

behavior of the system. 

The only way to resolve this contradiction is if the initial form of the solution (Eq. 

(2.16)) is invalid. We thus conclude that Adler and Breazeale's derivation of Mathieu's 

equation for length modulation of a straight acoustic resonator is incorrect. To our 

knowledge, a proper derivation does not yet exist. Moreover, there does not yet exist a 

physical derivation showing directly (without Mathieu's equation) that the drive can 

transfer a net amount of energy over one cycle to the response, thus leading to parametric 

excitation. The correctness of Mathieu's equation may thus be questioned here. 

However, although their derivation is incorrect, Adler and Breazeale present 

unquestionable experimental evidence for the parametric excitation of an acoustic 

resonator by length modulation. In fact, they employ the theoretical drive amplitude 

threshold to accurately determine absorption constants experimentally for various liquids. 

We thus conclude that the Mathieu equation given by Eq. (2.13) describes parametric 

excitation by length modulation of an acoustic resonator, but that a proper derivation of 

this equation does not yet exist. 

D.       THEORY OF TEMPERATURE MODULATION 

We consider a closed pipe whose ends are at x = 0 and x = L, where an external 

source uniformly modulates the temperature of the gas in the pipe. The frequency of an 

acoustic mode in the pipe depends upon the speed of sound, which depends upon the 
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temperature. It should thus be possible to parametrically excite a mode by appropriate 

modulation of the temperature. We show below that Mathieu's equation can indeed be 

derived in this case, which shows that parametric excitation should be possible. 

However, we also give a physical argument that suggests that parametric excitation may 

not be possible in this case. We have not yet resolved this conflict. 

The temperature modulation can be accomplished, for example, by varying the 

radius of the pipe if the walls are adiabatic and the wavelength corresponding to the drive 

frequency is large compared to the radius. A similar situation is examined in detail in Ch. 

IV for the case of a cylindrical cavity whose height is modulated. Another possibility is 

to subject the gas to electromagnetic radiation whose intensity is modulated. This is 

examined in Ch. V. 

To derive the linear wave equation for one-dimensional motion of the gas in the 

presence of a time-varying speed of sound, consider an element of gas of thickness dx. 

The mass of the element isp0Adx to first order, where p0 is the ambient density and A is 

the cross-sectional area of the pipe. The acceleration is dv/dt, where v is the particle 

velocity. The net force is due to the difference in pressure on the ends of the element, 

and is thus -A{dpldx)dx. Newton's second law then yields -dp/dx = p0dv/dt.  The 

rate of change of the mass of an element is A(dp/dt)dx, where p is the density. This 

arises due to a difference in the mass flow rate at the ends of the element, and thus can 

also be expressed as   -Ap0(dv/dx)dx.     The equation of continuity is therefore 

dp/dt = -p0dv/dx.   The ambient density p0  in a closed pipe is not a function of 

temperature and thus not a function of time.   We can then eliminate the velocity by 
16 



adding the x-derivative of the first equation to the t-derivative of the second equation, 

which results in d2p/dt2 -d2p/dx2 = 0. Let p0 be the ambient pressure at temperature 

T. The acoustic deviation of the pressure from p0 is p' = c2p', where p' is the density 

deviation and c is the speed of sound at temperature T. Substituting 

p = p0 + p' = p0 + c2p' and p = p0 + p' into the previous equation, and noting that p0 and 

c are not functions of x, results in 

Hence, the density variation is described by the standard wave equation even when the 

speed of sound is a function of time (but not space). It can be shown that this equation 

does not occur for the pressure variation p'. 

The square speed of sound is proportional to absolute temperature: c2 oc T. For 

the temperature modulation r = ro[l+r|cos(2©/)], where r\ = AT/T0, the wave 

equation (2.22) thus becomes 

l^fl+ncos^ll^O (2.23) 

where c0 is the speed of sound at temperature T0. In the dimensionless drive amplitude 

r|, it is important to note that T0 is the absolute temperature. 

To determine the effect of the temperature modulation on a mode of the pipe, we 

set p' = f(t) COS(«7DC/L), where n = 1,2,3,... in Eq. (2.23). The result is 
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d2 f 
-^-f+co>[l + Ticos(2G>0]/ = 0 (2.24) 

where the frequency of the «* mode is ©„ = wtc/Z. Equation (2.24) is a standard form 

of Mathieu's equation, so we conclude that it is theoretically possible to parametrically 

excite an acoustic mode by temperature modulation. The greatest rate of growth of the 

amplitude of a mode occurs when <o = coB and when the phase of the mode is such that 

the turning points occur at the positive-slope zero crossings of the drive. That is, there is 

a 45° phase shift between the response and the drive. 

To attempt to gain a physical understanding of this parametric excitation, we 

consider the fundamental mode in the pipe (Fig. 2.3). It is conceptually convenient to 

consider a temperature modulation where the change in temperature is "lumped" in time. 

Specifically, the temperature is abruptly increased at a turning point of the standing wave 

and abruptly decreased at equilibrium (Fig. 2.4). This phase corresponds to the 

theoretical maximum growth rate of the response. Our arguments can be extended to the 

more-common drives, which vary sinusoidally in time. 

The acoustical potential energy density is pe = c2p2 /2p0 and the kinetic energy 

density is ke = p0v
2 / 2. The temperature modulation alters the speed of sound but not the 

density or the particle velocity directly. The modulation thus increases the energy of the 

standing wave at the turning points but does not alter the energy at equilibrium, so the 

energy of the standing wave will grow. 

The situation is analogous to a mass on a spring, where the spring constant is 

abruptly increased at turning points of the motion and abruptly decreased at equilibrium. 
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The mass thus has a greater acceleration while it is moving toward equilibrium, and less 

deceleration as it is moving away, so its amplitude grows. This is consistent with energy 

conservation because work is required to stiffen the spring at a turning point of the 

motion, but no work is required to weaken the spring at equilibrium. In all cases where 

parametric excitation occurs, the drive must add more energy than it removes. 

This is a problem with the acoustics argument, however, because it appears that 

the same amount of heat is added and removed. If parametric excitation is possible for 

this system, the standing wave must somehow cause the source to add more heat than is 

removes. The resolution of this conflict is important for several reasons. First, it may be 

that parametric excitation by temperature modulation is impossible. That is, the above 

physical argument and the derivation of Mathieu's equation may be incorrect. Second, if 

parametric excitation by temperature modulation is possible, a physical understanding is 

important because actual drives may differ from the idealized temperature modulation 

drive. In an experiment, it would be important to understand possible effects of such 

nonideal drives. 
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Figure 2.3.     Density deviation p'(solid curves) and particle velocity v (dashed curves) 
corresponding to the fundamental acoustic mode of a closed pipe. 
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Figure 2.4.     Temperature modulation of the gas in a closed pipe, as a function of time. 
The temperature is spatially uniform, and "lumped" in time. The 
frequency is twice that of the fundamental acoustic mode (Fig. 2.3). 
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III.    LENGTH MODULATION OF A CLOSED PIPE 

In this chapter, we consider length modulation of a straight pipe in order to 

parametrically excite an acoustic mode. Because the natural frequency of a longitudinal 

mode of a straight pipe depends upon its length, parametric excitation can occur in 

principle. We investigate the experimental feasibility of this for the fundamental 

longitudinal mode. 

A.       DESCRIPTION 

We consider the excitation of the fundamental longitudinal mode of a cylindrical 

resonator of length L and radius a. Figure 3.1 provides a representation for the case to be 

considered. The parameter to be varied for this case is the cylinder length L. Since the 

longitudinal modes are defined by the cylinder length, varying the length at twice the 

frequency of the fundamental longitudinal mode should result in the parametric excitation 

of that mode if the drive amplitude is sufficiently large. It is important to note that the 

resonant frequencies of the longitudinal modes are harmonics of the fundamental 

longitudinal mode. Thus, parametrically exciting the fundamental mode by length 

modulation will also directly excite the second longitudinal mode. This unwanted effect 

could be eliminated by detuning the resonator to prevent the direct excitation of the 

second longitudinal mode (refer to Sec. II.C). 
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Figure 3.1.     Length modulation of a closed pipe. 

AL 

B.        QUALITY FACTOR AND PARAMETRIC THRESHOLD 

Assume a fluid in a pipe (as shown in Fig. 3.1) of cross sectional area S and 

ambient length L is driven by a piston at x = 0 and is rigidly terminated at x = L. The 

longitudinal (plane wave) resonances occur for knL = mi, where kn is the wavenumber of 

the n mode, for n = 1, 2... The wavenumber for the fundamental longitudinal mode is 

then given by &, = n/L. The fundamental longitudinal resonant frequency is given by 

f0=c/2L, (3.1) 

where c is the speed of sound. The pressure and velocity profiles for the fundamental 

longitudinal mode are shown in Figure 3.2. 
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Figure 3.2.     Profile of fundamental longitudinal mode of a cylindrical resonator. 

The quality factor for this resonance is determined by the amount of thermal and 

viscous losses that occur in the cavity. Kinsler et dl. (2000) derive the following 

expressions for the viscous and thermal absorption coefficients per unit length, where a is 

the pipe radius, p. is the coefficient of shear viscosity, y is the ratio of specific heats, K 

is the thermal conductivity, p0 is the fluid density, © is the angular frequency, and Pr is 

the Prandtl number: 

a(M1=(l/ac)>/fiö)/p0, (3.2) 

a«>K = 
1    (Y-l)   <PH 

{acj VPr V2Po 
(3.3) 

It should be noted that the Prandtl number provides a measure of the relative effects of 

viscosity to thermal conduction. These expressions are valid for wide pipes; i.e., a » 8V, 

where 8V is the viscous penetration depth (5V = ^/2|a/copj.   The viscous penetration 
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depth 8V is the distance required for the particle velocity amplitude to increase from zero 

at the wall to lie of its bulk value (Blackstock, 2000). The thermal penetration depth is 

the region near the wall where the flow changes from adiabatic to isothermal. The 

combined absorption coefficient is found by adding the viscous and thermal absorption 

coefficients and is thus given by 

f i \ 
a = 

\acj 
lUtf) V-l 

2p0 T ' VPr". 
1 + (3.4) 

This expression is based on the assumption that the boundary layer is small compared to 

the cylinder radius but not so small that bulk thermoviscous losses are important. 

Quantitatively, Blackstock (2000) writes this assumption as 

8„ «a« 
G)n8 0   v 

(3.5) 

Kinsler et al. (2000) state that the quality factor Q for a mode can be theoretically 

calculated from the following expression 

Q = k/2a. (3.6) 

Note that this does not include losses at the endcaps, which is normally small compared 

to losses along the cylindrical wall. Also, Eq. (3.7) does not include the possible 

lowering of the quality factor due to the presence of a driver at one (or both) ends of the 

pipe. Substituting Eq. (3.4) into Eq. (3.6) yields 

*-v& 1+ 
y-1 

VPr\ 
(3.7) 
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The dimensionless parametric drive threshold r^ is given by r\th = 21Q. Using Eq. (3.7), 

the parametric drive threshold for the longitudinal modes in a closed pipe is 

2    2»(u Y-l (3.8) 

If we consider the case of the fundamental longitudinal mode with (o = nc/L, then Eq. 

(3.8) becomes 

„   _2    2ML 
1+^i (3.9) 

a Y np0c 

Although Eq. (3.9) does not explicitly contain a frequency term, it is contained 

implicitly because it specifically applies to the fundamental longitudinal mode. The 

frequency of the fundamental longitudinal mode is dependent on the pipe geometry and 

the speed of sound in the enclosed gas. Equation (3.8) is applicable to the parametric 

excitation of any longitudinal mode in a closed pipe. We consider the fundamental 

longitudinal mode because it will require a lower drive frequency than higher modes. 

The modulated parameter for the geometrical case is the length of the cylindrical 

resonator. The fundamental longitudinal mode's angular frequency co is inversely 

proportional to the pipe length L. Using a first order approximation, we find that 

2 2 
CO   =©o V—COS2GA (3.10) 

V 

Thus, the dimensionless parametric drive amplitude can be expressed as r\ = 2AL/L. 

Substituting this expression into Eq. (3.9), we find that the required displacement 

amplitude to parametrically excite the fundamental longitudinal mode is given by 
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a V7ip0cV     VPr; 
(3.11) 

Note that this expression can be decomposed into a term dependent upon the geometry of 

the pipe and another term dependent on the gas contained in the pipe. 

C.       EFFECTS OF USING VARIOUS GASES IN THE CLOSED PIPE 

We now consider the case of a cylindrical resonator filled with different gases in 

order to understand their effect on the parametric drive threshold. Appendix A lists 

various thermodynamic and fluid properties of air, helium, carbon dioxide and sulfur 

hexafluoride at 25 °C and 1 arm. Substituting the values from Appendix A into Eq. (3.11), 

the threshold parametric drive amplitude AL for the fundamental longitudinal mode in SI 

units becomes 

j-3/2 

He: AL = 4.966 xlO"4 —, (3.12) 

7-3/2 

Air: AL = 2.508x10^ — , (3.13) 
a 

r3/2 

C02: £1 = 1.865x10^—, (3.14) 
a 

r3/2 

SF6: AL = 1.202 xlO"4 —, (3.15) 
a 

where a, L, and AL are expressed in meters.   The results of Eqs. (3.12) to (3.15) are 

plotted in Figures 3.3, 3.4, 3.5 and 3.6 along with the required drive frequency for each 

closed pipe length. These equations show that using a heavier gas can significantly 
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reduce the parametric drive threshold. The use of sulfur hexafluoride over air will reduce 

the parametric drive threshold by slightly more than a factor of two. On the other hand, 

the use of helium would result in a parametric drive threshold of approximately twice the 

value for air. Figures 3.7, 3.8 and 3.9 illustrate the significant differences in the 

parametric drive threshold for the various gases. 

It is worth mentioning the quality factor Q for a matter of comparison. For a 

straight pipe of radius 20 cm and length 1.0 m, Q is 800 for air, 1075 for C02, and 1660 

for SFö. Note that the quality factor is inversely proportional to the square root of the 

length. Thus, decreasing the length by half will result in the Q increasing by a factor of 

1.4. 

While sulfur hexafluoride has a lower threshold drive amplitude than the other 

gases, it has a much more significant effect on the frequency of the fundamental mode. If 

we consider a one meter long closed pipe at 25 °C, the fundamental frequency using 

sulfur hexafluoride is 136 Hz. For the same resonator containing air, the fundamental 

frequency is 346 Hz. If an electromagnetic driver is used to vary the length of the closed 

pipe, the maximum driver displacement is dependent on the frequency. For a driver 

operating in the mass controlled region, the driver displacement for a fixed current is 

inversely proportional to the square of the frequency.   Thus, using sulfur hexafluoride 

lowers the parametric drive frequency by the ratio of the speed of sound or approximately 

a factor of 2.5. This lower drive frequency can increase the drive amplitude by a factor 

of 6.3  (assuming the drive operates in the mass controlled region).  Figures 3.10, 3.11 

and 3.12 show the threshold parametric drive amplitudes for a given closed pipe length 

and as a function of the closed pipe radius, for various gases. The theoretical values for 
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various electromechanical drivers are also plotted in Figures 3.10 through 3.12.   The 

closed pipe radius for these drivers was chosen to match their active surface area. 

Of the electromechanical drivers considered, the EVX-150A driver generated the 

largest displacement. Figure 3.13 shows the threshold drive amplitude and the EVX- 

150A displacement amplitude as functions of length of the resonator. The figure shows 

that the EVX-150A is always capable of exceeding the threshold amplitude for a sulfur 

hexafluoride filled straight pipe. For carbon dioxide, the EVX-150A is capable of 

exceeding the threshold when the length is greater than approximately 1.2 m. For air, the 

EVX-150A is not capable of exceeding the threshold amplitude. However, it is possible 

to increase the drive amplitude by attaching an EVX-150A driver at each end of the 

resonator. 
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Figure 3.3.     Threshold parametric drive amplitude for the fundamental longitudinal 
mode of a helium filled closed pipe at 25 °C and 1 arm. 
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Figure 3.4.     Threshold parametric drive amplitude for the fundamental longitudinal 
mode of an air filled closed pipe at 25 °C and 1 arm. 
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Figure 3.5.     Threshold parametric drive amplitude for the fundamental longitudinal 
mode of a carbon dioxide filled closed pipe at 25 °C and 1 atm. 
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Figure 3.6.     Threshold parametric drive amplitude for the fundamental longitudinal 
mode of a sulfur hexafluoride filled closed pipe at 25 °C and 1 atm. 
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Figure 3.8.     Threshold parametric drive amplitude for a 1 m long closed pipe filled 
with various gases at 25 °C and 1 atm. 
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Figure 3.12.   Threshold parametric drive amplitude (curve) and various driver 
amplitudes (points) for a closed pipe containing sulfur hexailuoride at 25 
°C and 1 atm. 
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IV.    HEIGHT MODULATION OF A CYLINDRICAL CAVITY 

In this chapter, we consider height modulation of a cylindrical cavity in order to 

parametrically excite an acoustic mode. Modulating the height modulates the 

temperature and thus the speed of sound. Because the natural frequency of a mode 

depends upon the speed of sound, parametric excitation can occur in principle. We 

investigate the experimental feasibility of this for the fundamental radial mode. 

A.       DESCRIPTION 

We consider a cylinder of radius a and height h as shown in Fig. 4.1. In 

cylindrical coordinates (r,z, 9), the standing wave solution to the linear wave equation 

for the pressure can be written as 

P^=A^Jm(k^r)coB(mß + VtJcos(klz)e,^t (4.1) 

where Abm and \\r!mn are constants, p is the acoustic pressure, Jm is the m order Bessel 

function, k is the wavenumber, t is the time, <a is the angular frequency, and /, m, and n 

are nonnegative integers with at least one nonzero. Additionally,   k^lnlh   and 

®lmn=cjk2
mn+k? . 
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Figure 4.1.     Height modulation of a cylindrical cavity. 

B.       ENERGY STORED IN THE FUNDAMENTAL RADIAL MODE 

We will deal with the fundamental radial mode, which occurs for / = 0, m = 0, and 

n = 1. from Eq. (4.1), the pressure is given by 

.Pool — Am^o (Aoir)e   °°' > (4.2) 

where k0i is determined by the boundary condition at r = a which is dp/dr = 0 or 

equivalently u = 0 for a rigid boundary. In terms of the Bessel functions, the boundary 

condition becomes J'0(k0la) = -Jl(kma) = 0. The velocity potential <|> is related to the 

acoustic pressure by p = -p0 dfy/dt. Using this relationship and Eq. (4.2) yields the 

velocity potential for the fundamental radial mode 

<l>001 = 
Po^ooi 

J<i>00i' (4.3) 

The gradient of the velocity potential gives the particle velocity u for the fundamental 

radial mode 
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M001 ~~ 
Poc 

,/®ooi' (4.4) 

where the relationship a>m = ck0l has been used to simplify the expression. The pressure 

and velocity amplitudes as functions of r are shown in Fig. 4.2. 
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Figure 4.2.     Profile of the fundamental radial mode of a cylindrical resonator. 

The instantaneous energy density of an acoustic wave is given by 

£=4P 2Ko 

f    _   A 
u2 + 

PocJ 
(4.5) 

Substituting Eqs. (4.2) and (4.4) into Eq. (4.5), we find the instantaneous energy density 

of the fundamental radial mode to be 

^ = lPo 
-4)01 

_Poc 
[ Jl(kMr) cos2 cat + J\ (k01r) sin2 art]. (4.6) 
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The total energy E can be found by time averaging and integrating the instantaneous 

energy density over the cylinder volume: 

E = 

'"*Po r[y»(V)+^(V)>-. *L J (4.7) 

Evaluating the integral of Eq. (4.7) and applying the boundary condition Jl(k0la) = 0, 

yields: 

u 

j[j2
0(k0lr) + J?(k(nr)]rdr = a2J2

0(k0la), (4.8) 

where each term of the integrand contributes equally to the integral, which must be the 

case because the average kinetic energy equals the average potential energy. Substituting 

Eq. (4.8) into Eq. (4.7) yields 

E = (tthpA 
I   2   ) 

■4)01 

<Poc, 
a2J2(k01a). (4.9) 

C.       POWER DISSIPATION 

Swift (1988) derives the following general expression for the average rate of 

energy dissipation e per unit of surface area of a resonator: 

e = -^T8K(y-l)©+-poM
28vco, 

4 p0C 4 
(4.10) 
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where 8K is the thermal penetration depth and 8V is the viscous penetration depth. 

Blackstock (2000) shows that the viscous penetration depth can be expressed as: 

5 =. 
_2u_ 

<*>Po 
(4.11) 

where u is the coefficient of shear viscosity. Furthermore, the thermal penetration depth 

is related to the viscous penetration depth by the following relationship: 

8K=8V/VP7, 

where Pr is the Prandtl number. Using Eq. (4.12), Eq. (4.10) becomes 

(4.12) 

e = -8vö> 

p2 <*--w 
p0c

2  VPr 
(4.13) 

The rate of total energy dissipation E for the fundamental radial mode can be 

found by substituting the magnitude of Eqs. (4.2) and (4.4) for the pressure and velocity, 

respectively, and then integrating Eq. (4.13) over the surface area of the cavity: 

E = 1 4n°> 
4   p0c

2 JJ Ij2j2
0(k0lr) + J?(k01r) dS. (4.14) 

For the top and bottom of the cavity, the differential surface area element is rdrdQ. The 

differential surface area element for the side is adQdz. Integrating over the top and 

bottom and evaluating for the first radial mode yields 

ff ^•/?<*b,r)+./?(V) rdrdQ = fci+l 
VPr     , 

na2J2
0(k0la). (4.15) 

Similarly, integrating over the side and evaluating for the first radial mode yields 
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rr ̂ Jl(k0la) + J2
x(kma) 

y—1 
adQdz =2nah+-j=jQ (k0la), (4.16) 

where J^k^a) = 0.  Losses at the side are solely thermal losses since the pressure is a 

maximum at the wall while the velocity is zero. Using the results from Eqs. (4.15) and 

(4.16), Eq. (4.14) becomes 

4   p0c' 

y-1 1i=(a + 2h) + a 
vPr 

(4.17) 

D.       QUALITY FACTOR AND PARAMETRIC DRIVE THRESHOLD 

The quality factor is related to the energy stored at resonance and the energy 

dissipation by the relationship Q = (üE/E . The energy stored at resonance is given by Eq. 

(4.9) while the rate of energy dissipation is given by Eq. (4.17). Thus, 

Q = -r 
2ah 

*g(a + 2h) + a 
(4.18) 

Substituting Eq. (4.11) into Eq. (4.18) and converting the angular frequency into 

frequency yields 

Q = . 
Wo 2ah 

H   [(y-l)/>/Pr](a + 2/z) + a' 
(4.19) 

Equation (4.19) is valid for the first radial mode of a cylindrical resonator, as long as the 

bulk losses are insignificant compared to the boundary layer thermoviscous losses. 

The resonant frequency for the fundamental radial mode is given by 
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/0=c(3.830)/27ra (4.20) 

where 3.830/a is the wavenumber for the fundamental radial mode. As stated in Ch. II, 

the dimensionless parametric drive threshold r\(h for a parametric drive, where the square 

frequency of a mode is modulated as  (ol(l + r\cos2(o0t), is given by  r\th=2/Q. 

Substituting Eqs. (4.19) and (4.20) into this expression yields the parametric drive 

threshold for the fundamental radial mode of the cylindrical cavity: 

nr[fr-^](^')» 
"A    V3.830p0c W^ 

E.        MODULATING THE SPEED OF SOUND 

One means of parametrically exciting the fundamental radial mode is to vary the 

speed of the sound in the cylindrical resonator. Compressing and expanding an enclosed 

gas causes its temperature to increase and decrease, respectively. If we treat the enclosed 

gas as an ideal gas and assume that the compression occurs adiabatically, then it is 

possible to relate the temperature change to the volume change. We consider using a 

driver to alternately expand and compress the gas. In order to achieve an approximately 

uniform temperature modulation, it is necessary to drive a piston at a frequency 

sufficiently below the resonant frequency of the fundamental longitudinal mode. Using 

Eqs. (3.1) and (4.20), and requiring that the drive frequency 2/0 be much less than the 

fundamental longitudinal frequency, we find that the cylinder height and radius are 

related by: 
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Ä«: 0.4101a. (4.22) 

To evaluate the feasibility of parametrically exciting the fundamental radial mode, it is 

necessary to provide a further quantification of this restriction. 

The particle velocity and pressure of an enclosed cylinder driven by a vibrating 

piston at x = 0 and rigidly terminated wall at x = h are given by 

J(ät cosk(h-x) ,A~~. P = -jZ0u0e
ja' .\     \ (4.23) 

sm kh 

jett sihk(h-x) 
u = u0e

jmt r1—^. (4.24) 
SUIä:« 

where Z0 is the acoustical impedance, and u0 is the amplitude of the particle velocity 

(Blackstock, 2000). The acoustic impedance of a short cylinder can be expressed in 

terms of the stiffness and inertia. For low frequency we can neglect the inertia, and the 

acoustic impedance is then Z0 = p0c. Furthermore, for kh <s: 1 the expressions for the 

particle velocity and pressure can be written 

p = -je?» Z&L = Ma£_eJ*'t (4>25) 
kh       j&h 

u = u0(l-x/h)eJa". (4.26) 

Thus, we see that the pressure is approximately a constant inside the cavity and the 

velocity approximately decreases linearly from the maximum at the piston to zero at the 

end. These expressions are valid in the limit ofkh«l, which can be rewritten as 

/z<sc(0.1305)a, (4.27) 
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for the case where the drive frequency is twice the fundamental radial mode frequency. 

Eq. (4.27) is more restrictive than Eq. (4.22) for the case of parametrically exciting the 

radial mode. 

Figure 4.3 shows the pressure variation in a cylindrical cavity as a function of the 

wavelength. As the value of kh decreases, Figure 4.3 shows that the normalized pressure 

approaches a uniform value. The pressure is a maximum at the end opposite the driver. 

For the purposes of this analysis, we assume, that the cylinder height is a tenth of the 

wavelength (h = X/lO). This relationship can be rewritten by applying the boundary 

condition at the wall for the fundamental radial mode (& = 3.830 / a) to yield 

h = 0.16a. (4.28) 

While appearing to violate Eq. (4.27), this provides a fairly uniform pressure distribution 

in the cylinder without being too restrictive. 

The wavelength of the fundamental radial mode is determined by the radius of the 

cylinder. The frequency of the fundamental radial mode is dependent on the wavelength 

and the speed of sound. Thus, by varying the speed of sound at twice the frequency of the 

fundamental radial mode, it may be possible to parametrically excite the fundamental 

radial mode. We now determine the variation of the speed of sound. 
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Figure 4.3.     Normalized pressure distributions for various drive frequencies as a 
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The first law of thermodynamics can be expressed as 

dE = dQ-PdV (4.29) 

for one mole of gas, where dE is the differential internal energy, dQ is the heat absorbed, 

dV is the differential volume of the gas, and P is the pressure. If we consider an 

infinitesimal quasistatic process in which the temperature changes by dT, then the 

internal energy can be expressed as 

■ CvdT = dQ-PdV, (4.30) 

where Cv is the molar heat capacity at constant volume. Furthermore, if we consider an 

ideal gas that is adiabatically isolated so that it absorbs no heat, then dQ = 0 and 

PV = 7ZT, where 7Z is the universal gas constant. Eq. (4.30) then becomes 

fi^^l, (4.31) 
K T        V 

An equivalent derivation of Eq. (4.31) can be done using the ideal gas law and the 

pressure-volume relationship for an adiabatic process (PV = constant). 

The speed of sound in a medium is given by the following relationship: 

c = ^T, (4.32) 

where y is the ratio of heat capacities, r is the specific gas constant, and T is the 

temperature in degrees Kelvin. Since the angular frequency a of a mode is proportional 

to the sound speed c and the sound speed is proportional to the square root of the absolute 

temperature T, then 
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f     AT ^ 
©2=(öo  1+ cos2©*  , (4.33) 

T J 

where AT is the peak amplitude of the temperature modulation. Thus, the dimensionless 

parametric drive amplitude is given by T\ = AT IT. 

Since the cylinder volume is modulated by varying the height, then 

(4.34) 
AV    Ah 
V ~ h 

Eq. (4.34) can be substituted into Eq. (4.31) and rearranged to yield 

f"<T-l)£ («5) 

where we have also made use of the relationship:  7ZICv=y-\. We now have an 

expression for the dimensionless parametric drive amplitude r|: 

n = -(r-i)x- (436> 

We now desire to express the threshold of the modulated parameter in terms of 

the geometrical and physical properties of the resonator. Recall that the dimensionless 

parametric threshold is related to the quality factor of a mode by x\th = 21Q. Thus, Eq. 

(4.21) can be substituted into Eq. (4.36) and rearranged to yield 

Ah = 
2\i        1  (a + 2h      a 

3.830p0c Va\ VPr     y-lj 
+— . (4.37) 

Eq. (4.37) gives the required amplitude of the driver displacement to parametrically 

excite the fundamental radial mode of a cylindrical resonator. It is interesting to note that 

54 



a gas with a specific heat ratio of approximately unity will have a large threshold value 

regardless of the other parameters. This occurs because y = 1 corresponds to isothermal 

volume changes. [Refer to Eq. (4.36).] 

F.        EFFECTS   OF   USING   VARIOUS   GASES   IN   THE   CYLINDRICAL 

CAVITY 

If we now consider the use of various gases in the cylindrical resonator, Eq. (4.37) 

becomes 

J      . AJ    5.654xl0"4fl + 3.643xl0^Ä 
dry air: Ah = j= , (4.38) 

A7    6.747 xlO_4a +6.013 xlO^Ä 
helium: Ah= r , (4.39) 

__ ..    1.161x10-^ + 2.056x10^ 
SF6: Ah= j= , (4.40) 

™ Ai.    5.741xlQ-4a + 2.898xlQ-4^ 
C02: A/z = T= , (4.41) 

where the cylinder height h and radius a are in units of meters. The thermodynamic and 

fluid properties for these gases are compiled in Table 1 of Appendix A. Equations (4.38) 

through (4.41) give the threshold drive amplitude necessary to parametrically excite the 

fundamental radial mode of a cylindrical resonator. The equations are plotted in Fig. 4.4 

for a cylindrical cavities with 10 cm and 20 cm radius. SFö is disadvantageous due to its 

ratio of specific heats being near unity (y = 1.09376).   Figures 4.5, 4.6, and 4.7 show 
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level curves of the threshold drive amplitude. Also included on Fig. 4.5,4.6, and 4.7 is a 

line depicting the relationship between the drive frequency and the height of the 

cylindrical cavity. We require that the height of the cylindrical cavity be less than one- 

tenth the wavelength of the driver to ensure a relatively uniform pressure distribution. 

As for the straight pipe, it is worthy to note the quality factors for these different 

gases. For a cylindrical cavity of 20 cm radius and 1.0 m height, the quality factor Q is 

4700 for air, 7500 for CO2. and 1800 for He. The quality factor is approximately 

inversely proportional to the square root of the cylinder radius. Thus, decreasing the 

radius by half will increase the Q by approximately a factor of 1.4. 

Figures 4.8 and 4.9 show the threshold amplitude of the parametric drive for a 

cylindrical cavity with heights of 1.0 or 2.0 cm and filled with either helium, air, carbon 

dioxide, or sulfur hexafluoride. Also shown on Fig. 4.8 and 4.9 are the displacement 

amplitudes of various drivers, where the cylinder radius is chosen to equal the driver 

radius. The driver corresponding to each point in these figures can be determined from 

the data compiled in Appendix C. As with the closed pipe, the EVX-150A generated the 

largest amplitude for a given gas. However, the displacement produced by all of these 

drivers is substantially below the threshold necessary to parametrically excite the 

fundamental radial mode. We conclude that such excitation is infeasible, at least for the 

drivers we considered. 
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Figure 4.5.     Level curves of the parametric drive threshold for the fundamental radial 
mode of an air filled cylindrical cavity at 25 °C and 1 arm. 
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Figure 4.6.     Level curves of the parametric drive threshold for the fundamental radial 
mode of a carbon dioxide filled cylindrical cavity at 25 °C and 1 atm. 
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Figure 4.7.     Level curves of the parametric drive threshold for the fundamental radial 
mode of a sulfur hexafluoride filled cylindrical cavity at 25 °C and 1 atm. 
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Figure 4.8.     Threshold drive amplitude (curves) and various driver amplitudes (points) 
for a given cylindrical cavity geometry and filled with helium (top) or air 
(bottom). 
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V.      TEMPERATURE MODULATION BY ELECTROMAGNETIC 
RADIATION 

In addition to the geometrical modulation of the temperature of a fluid in an 

acoustic resonator considered in Ch. IV, another possibility is to subject the fluid to 

electromagnetic radiation whose intensity is modulated. This is more complicated to 

understand and calculate, but may be more practical. In this chapter, we consider 

temperature modulation of the fluid in a resonator by an electromagnetic wave source, 

which may be a modulated magnetron (Fig. 5.1). 

<=■ 

heat 

resonator 

z\ 
modulated 
magnetron 

=> 

iL± 

Figure 5.1.     Schematic arrangement for microwave modulation of the temperature of 
the fluid in an acoustic resonator. 
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A.       QUALITATIVE DESCRIPTION 

The time variation of the power output of a modulated electromagnetic wave 

source is typically an on-off cycle shown in Fig. 5.2(a). The modulation occurs at 

acoustic frequencies, specifically, twice the natural frequency of the acoustic mode to be 

parametrically excited. We assume that the radiation is distributed uniformly over the 

fluid of the resonator. The fluid is expected to absorb the radiation at a rate proportional 

to the intensity, regardless of the temperature. (We assume that the temperature is not 

sufficiently high that ionization of the fluid occurs.) 

Figure 5.2(b) shows a sketch of the spatially-averaged temperature of the gas for 

short times after the source is turned on. The temperature T0 is the constant temperature 

of the walls of the resonator. The temperature of the gas increases approximately linearly 

during the on-time of the source, and the temperature decreases a very small amount 

during the off-time. This behavior occurs because the on and off times are short, and 

because the temperature of the fluid is only a small amount greater than T0, so the heat 

flow through the walls is small. 

As the temperature of the fluid increases, the rate of heat flow increases. This 

produces two effects: the temperature will not rise as rapidly during the on-time, because 

some heat flows out of the system, and the temperature will drop more rapidly during the 

off-time, due to the greater temperature gradient and thus greater heat flow. Eventually 

the temperature of the fluid will become sufficiently large that the system will be in 

steady state, which is sketched in Fig. 5.2(c). In this case, the net gain in heat during the 

on-time equals the heat lost during the off-time. It should be noted that the peak-to-peak 
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amplitude of the temperature oscillations in the steady state is less than the change in 

temperature during the on-time for short times [Fig. 5.2(b)]. That is, the temperature 

oscillations tend to "wash out." This is disadvantageous because the amplitude of the 

temperature oscillations must be greater than a threshold value if parametric excitation is 

to occur. The greater the source power P, the greater will be the operating temperature 

rav and the amplitude of the temperature oscillations. Hence, parametric excitation 

should occur if Tav is sufficiently large. 

It is not difficult to obtain a powerful magnetron and to modify it so that the 

power can be modulated at acoustic frequencies (Lamb, 2000). The problem is that the 

requisite operating temperature Tay may be prohibitively large. For example, the fluid 

may change its state, including possible ionization. As another example, convection 

could occur, which would cause turbulence and thus lower the quality factor of the 

acoustic mode. 
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Figure 5.2.     Time behavior of (a) the power delivered by the microwave source, and 
the spatially-averaged temperature of the fluid (b) for short times and (c) 
in the steady state. 
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B.   GENERAL FORMULATION OF PROBLEM 

If T(r,t) is the temperature of a substance and K is the thermal conductivity, the 

heat flux is 

q = -KVT, (5.1) 

which is measured in energy per unit area per unit time. Conservation of energy yields 

the continuity law (Landau and Liftshitz, 1959) 

dT_   - - 
dt 

pcp—+V-q = g, (5.2) 

where p is the density (which is not necessarily constant), cp is the specific heat at 

constant pressure, and g(r,t) is the heat source function, which is measured in energy 

per unit volume per unit time. 

We consider the case of the absorption of electromagnetic radiation that is 

uniformly distributed over a confined fluid. The heat source function g is proportional 

to the density p, and the integral of g over the total volume V of the substance must 

yield the total power P of the absorbed electromagnetic waves, so g = Pp/M, where M 

is the total mass of the gas. If the average density of the fluid is p0 (which is the ambient 

density), then g = Pp/ p0V. 

The boundary condition is that the temperature is constant on all nonadiabatic 

surfaces. We express this as 

T\ =T. C5 3^ \boundary »• W"V 
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We first consider a liquid (e.g., water). Because the thermal conductivity K and 

density p are approximately independent of temperature, the elimination of the heat flux 

in Eqs. (5.1) and (5.2) yields the equation 

— = oV2T + y, (5.4) 
dt 

where the thermal diffusivity is the constant a = K/p0c , and the temperature source 

function is the spatial constant \|/ = g I pcp = P/Vp0cp. 

To show how Eq. (5.4) can be solved, we decompose the temperature source 

function and the temperature into time-averaged and oscillatory parts (whose time 

averages are zero): 

\|/ = vj/ + i|/'(0, (5-5) 

T = T(r) + T'(r,t), (5.6) 

where the overbars denote time-averaged quantities. The boundary conditions are 

f\ =T0 and T'V   „   =0. (5.7) 
\boundary ° \boundary 

By substituting expressions (5.5) and (5.6) into Eq. (5.4), and recognizing that the time- 

averaged and oscillatory quantities must separately satisfy the equation, we have 

V2f = -\j//a, (5.8) 

= cjV2r + \|/. (5.9) 
dt 
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The time-averaged equation (5.8) is Poisson's equation, which also arises in 

electrostatics. The solution of this is considered in the next section. In the oscillatory 

equation (5.9), we assume a sinusoidally-varying source function by letting 

\j/ -»vj/'exp(z(öO, where v|/' is now an amplitude and where the real part is understood. 

Letting T ->• 7"exp(iat) gives 

aV2r-/cor = -\i/. (5.10) 

The particular solution is 7" = \|/7ZG>. For a cylindrical geometry, the homogeneous 

solution is a Bessel equation of zero order with a complex argument which is neither 

purely real nor purely imaginary. 

The situation is substantially more complicated for gases. For an ideal gas, the 

thermal conductivity is K = aTm, where a is independent of temperature. Furthermore, 

the density varies as p = ß/77, where ß is a spatial constant given by ß = pmlk, where/? 

is the pressure, m is the molecular mass, and k is Boltzmann's constant. The pressure can 

be determined self-consistently by demanding that the total mass (volume integral of the 

density) equal the total mass of the gas. Eliminating the heat flux from Eqs. (5.1) and 

(5.2), then yields 

— = t;T3/2V2T + t;Tl,2(VT) + \v, (5.11) 

where \y = g/pcp=P/Vp0cp as before, and C, = a/ßcp. 

The above procedure with the time-averaged and oscillatory parts can now be 

followed.    The time-averaged equation is highly nonlinear, and its solution would 
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probably have to be accomplished numerically. The oscillatory equation is a linear 

equation because we assume small temperature oscillations (|7"|«:r), and thus should 

be solvable. However, we roughly estimate in Sec. D that the operating temperature 

required for parametric excitation appears to be too high to be feasible. A high 

temperature would cause convection to occur, which is entirely omitted in the above 

analysis, and which is much more difficult to calculate. We thus leave the temperature 

calculations for future work, if the situation alters such that the calculations become 

worthwhile to do. 

C.        SPATIAL DISTRIBUTION OF THE STEADY-STATE TIME-AVERAGED 

TEMPERATURE 

As explained in Sec. A, the time-averaged temperature must necessarily be 

elevated compared to the outside temperature. This occurs because an electromagnetic 

radiation drive cannot remove heat. The removal must be accomplished by conduction to 

the walls of the resonator, which are assumed to be maintained at a constant (e.g., room) 

temperature T0.  In this section, we determine a relationship that allows the operating 

temperature distribution of water in a resonator to be estimated. 

It is instructive to begin with the one-dimensional case [Fig. 5.3(a)]. Note that 

this is identical to the two-dimensional case of a rectangle [Fig. 5.3(b)] if the walls aty = 

0 andy = b are adiabatic. The general solution of Poisson's equation (5.8) is 

T = Ax + B-^-x2. (5.12) 
2a 
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The boundary condition T = T0 at x = 0 implies that B = T0. The condition T= T0 at x = L 

then implies A = vj/I / 2a. Hence, the solution is 

f = T0+^-x{L - x). (5.13) 
2a 

The maximum temperature difference, which occurs at x = 1/2, is AT^ = ij/Z.2 /8a. The 

average temperature over the length of the resonator is Tav = TQ +\j7I2 /12a. From Eq. 

(5.1), the outward heat flux at either boundary is q = yL/2, which is independent of a. 

This second result is obvious from energy conservation: In the gas, the source generates 

power per unit cross-sectional area equal to vj/Z,. In the steady state, this must equal the 

total outward heat flux, which is twice the flux at each wall, so this flux must be vj/L / 2. 

We next consider the two-dimensional case of a rectangle [Fig. 5.3(b)] all of 

whose walls  are  at temperature   T0.     The  assumption of a  separated  solution, 

T(x,y) = X(x)Y(y) yields 

£1 r= ^ l 

X + Y       a XY 

Due to the source term, this is not separable. This problem arises for any geometry of 

more than one dimension if the temperature has more than one degree of freedom; for 

example, a cylinder [Fig. 5.3(c)] all of whose walls are held at a fixed temperature T0. 

Such problems can be solved by the Green's function method. The Green's function for 

the case of the cylinder is known (Jackson, 1975). The temperature distribution can then 

+_ = __^_. (5.14) 
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be found by simply integrating the Green's function over the volume of the cylinder, 

because our source function is a constant. 

There is another aspect to consider, however. The steady-state temperature 

distribution alters the speed of sound, which will distort the pressure and velocity 

distributions of a mode. This was responsible for the conclusion of Raspet et ah (1996) 

that a longitudinal acoustic mode in a pipe cannot be parametrically excited by 

electromagnetic radiation, because motion transverse to the resonator would occur. In the 

case of a radial mode of a cylinder, we can eliminate this problem by arranging the top 

and bottom surfaces [z = 0 and z = h in Fig. 5.3(c)] to be adiabatic. The temperature 

distribution then does not cause the wave fronts to bend, but simply alters the speed. As 

we show below, this arrangement has the added advantage that there is only a single 

degree of freedom, so that the temperature distribution is easily determined. 

For a cylinder with adiabatic top and bottom surfaces, Poisson's equation (5.8) 

reduces to the radially symmetric case 

r dr 
r— -, (5.15) 

which has the general solution 

The boundary condition that the temperature remain finite at r = 0 yields A = 0. The 

boundary condition that the temperature equals T0 at r = a then yields B = T0 + ij/a21 Acs. 

The solution is thus 
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f = T0+^-(a2-r2), (5.17) 
4av ' 

which is parabolic just as in the Cartesian one-dimensional result (5.13). The maximum 

temperature difference, which occurs between r = 0 and r = a, is 

*--*?■■ (5-18> 4a 

From Eq. (5.17), we find that the average temperature over the volume of the resonator is 

Tav=T0 + vf. (5.19) 
8a 

From Eq. (5.1), the outward heat flux at the radial boundary is 

«=f, (5.20) 

As in the Cartesian case, Eq. (5.20) is obvious from energy conservation: The source 

generates power in the gas equal to ij/7ta2A, which in the steady state must equal the 

outward heat flux integrated over the side wall, which is Inahq. Hence, q = ya/2. 
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0 a 

(C) 

h 

0 
0 a 

Figure 5.3.     Various geometries of a resonator whose fluid is temperature-modulated 
by electromagnetic radiation: (a) one-dimensional case, (b) rectangle, and 
(c) cylinder. 
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D.   HEAT LOSS DUE TO THERMAL CONDUCTION 

For microwave modulation of the temperature, the source provides a heat input on 

the first part of the acoustic cycle. In the steady state, the net heat absorbed must equal 

the heat lost during the second part of the cycle. For an assumed operating temperature, 

we now estimate the time required for the temperature drop to occur. The peak to peak 

temperature drop must exceed twice the threshold temperature change in order for 

parametric excitation to occur. 

The heat equation without generation can be written as: 

V2J = ^^—, (5.21) 
K   dt 

The quantity K/p0cp is often written as a, and is called the thermal diffusivity.   As 

explained in Sec. B, Eq. (5.21) does not apply to gases. However, it is expected to be a 

rough approximation if an average value of the thermal conductivity is used. If we now 

consider a cylinder in which the temperature is only radially dependent, then Eq. (5.21) 

becomes 

r dr 
r— 

\   dr j 
■if. (5.22) 
cr dt 

where r is the radial distance.  We can also impose the following boundary and initial 

conditions: 

T(a,t) = T0, (5.23) 

T(r,0) = f(r), (5.24) 
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where a is the cylinder radius, and f(r) is the temperature distribution at time t = 0. It 

should be noted that this problem assumes that the cylinder end caps are adiabatically 

isolated (i.e. no heat flow occurs), as discussed in Sec. C. This problem has been solved 

in a number of textbooks on partial differential equations and we state the result from 

Powers (1987): 

T(r,t) = T0+fdbnJ0<j0nr/a)exp(-j2
0not/a2), (5.25) 

n=l 

where bn are constants, J0 is the zeroth order Bessel function, and j0n are the zeros of 

JQ. The coefficients bn can be found by applying the initial condition (Eq. (5.24)). 

Since the density and thermal conductivity are functions of the temperature, the thermal 

diffusivity is also temperature dependent. Equation (5.25) assumes that the thermal 

diffusivity is essentially constant over the range of temperatures in the cylinder. 

For a cylindrical cavity subjected to a uniform heat source, the steady state 

temperature profile is parabolic in the case of water (Sec. C), and will be roughly 

parabolic   for   gases.      We   assume   that   the   temperature   profile   is   given   by 

T = To +Tmax[l-(r/a) ]» where 7^ is the temperature at the center of the cylinder. For 

ease of calculation, we will assume that the temperature profile can be approximated by 

the zeroth order Bessel function. Specifically, the temperature profile can be 

approximated by T = T0+(l.09T0)J0(j01r/ a), where j01 is the first zero of J0.  This 

expression for the temperature fits the boundary condition at the wall and provides the 

same average temperature as the parabolic expression. Figure 5.4 shows a comparison of 

these two temperature profiles. 
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Figure 5.4.     Temperature profile comparison for a cylinder with uniform heat 
generation. 

Using the Bessel function approximation for the temperature, Eq. (5.24) becomes 

T(r,0) = T0+(h09T0)J0U0lr/a). (5.26) 

From this initial condition, we can now determine the coefficients bn.  Substituting Eq. 

(5.26) into Eq. (5.25) yields 

(l.097/0) Ujmrla) = £ V.^/B) (5.27) 
n=i 

From Eq. (5.27), we can see that the coefficients bn all vanish, with the exception of n = 

1. Thus, we see that 6, =1.097^. The solution for the transient heat conduction 

problem now reduces to 
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T(r,t) = T0 + Tjj0(j0nr/a)exp(-j2
0nGt/a2), (5.28) 

wnere T
LK = 1-092^.  Equation (5.28) can be rearranged to determine the time for the 

temperature change to occur: 

f ~2 A 
t = - 

a 

v'L°j 
In nr,D-n ) (529) 

TLMJ0nr^)y 

We now consider the case of a cylindrical cavity, with 20 cm radius and 50 cm 

height, filled with air and 7^ = 100 °C. The threshold temperature change to 

parametrically excite the fundamental radial mode can be determined from Ch. IV (Eq. 

(4.21) where r\th=AT/T). The values for the physical and thermal properties are 

contained in Appendix A. The threshold is Ar = 0.225 °C for a cylindrical cavity with a 

20 cm radius and 50 cm height. The peak to peak temperature change is twice the value 

of the threshold AT. From Eq. (5.29), we find that the time for the temperature to drop 

by 0.450 °C is 255 ms. If the temperature drop occurs over half the drive cycle, then this 

corresponds to a drive frequency of 1.96 Hz. The parametric drive frequency required to 

parametrically excite the fundamental radial mode is 2.4 kHz. Thus, we see that the 

maximum drive frequency for this specific case is three orders of magnitude below the 

required drive frequency. 

A similar calculation for a cylindrical cavity filled with carbon dioxide (same 

geometrical dimensions and temperature) gives the threshold AT = 0.162 °C. The time 

for the peak to peak temperature drop to occur is 346 ms, which corresponds to a 1.45 Hz 
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drive frequency. The required drive frequency for this case is 1.8 kHz. Once again, we 

are three orders of magnitude below the required drive frequency. 

From these calculations, it does not appear that the necessary heat transfer can 

occur over an acoustic cycle. A higher rate of heat transfer occurs for higher thermal 

gradients. However, in order to obtain a drive frequency near the required value, we 

would have to increase the temperature in the cylindrical cavity substantially beyond 

100 °C. Thus, our analysis indicates that parametric excitation by microwave modulation 

of the temperature is not feasible. 
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VI.    CONCLUSIONS AND FUTURE WORK 

A.       CONCLUSIONS 

We have considered theoretical investigations of the feasibility of parametrically 

exciting a mode of an acoustic resonator. The motivation of the work is that such 

excitation may lead to large amplitudes, which would be useful in high-amplitude 

resonant acoustic devices such as thermoacoustic refrigerators, acoustic pumps, and 

acoustic compressors. We investigated modulating the natural frequency of the 

fundamental mode of a straight pipe by modulating the length, and modulating the natural 

frequency of the fundamental radial mode of a cylindrical cavity by modulating the 

temperature. 

For the case of modulating the length of a straight pipe, we found that it appears 

feasible to excite the longitudinal mode if sulfur hexafluoride is used in the resonator. 

The quality factor for a straight pipe filled with sulfur hexafluoride is roughly twice the 

value for a straight pipe filled with air. Furthermore, the relatively low sound speed of 

sulfur hexafluoride requires a lower drive frequency, which allows an electrodynamic 

driver to produce a larger displacement amplitude. For sulfur hexafluoride, we found that 

the Electrovoice EVX-150A driver can theoretically exceed the threshold displacement 

for all lengths of the resonator. If the straight pipe is filled with carbon dioxide, we found 

that the EVX-150A can theoretically exceed the threshold for cases where the length is 

greater than 1.2 meters. On the other hand, for the drivers we considered, it the threshold 

displacement cannot be reached for a straight pipe filled with air. 
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We investigated the feasibility of parametrically exciting the fundamental radial 

mode of a cylindrical cavity in two ways. In the first case, we considered compressing 

and expanding the enclosed gas and thus modulating the temperature. By assuming an 

ideal gas which undergoes adiabatic compressions and rarefactions, we related the change 

in volume to a change in temperature. We also invoked a quasistatic limit to ensure that 

the pressure change was approximately uniform throughout the resonator. The 

quasistatic limit required that the wavelength be much greater than the height of the 

cylindrical cavity, which forced us to consider resonators with a relatively small height. 

Regardless of the enclosed gas, parametric excitation of the radial mode by modulating 

the height was found to be infeasible for all geometries for the drivers we considered. 

In the second case, we conducted a preliminary investigation into modulating the 

temperature using an electromagnetic wave (e.g., microwave) source. Rough calculations 

of the time required to conduct the heat from the resonator showed that the attainable 

drive frequency was three orders of magnitude below the required parametric drive 

frequency. It thus appears highly improbable that sufficient heat conduction can occur 

over an acoustic cycle unless the resonator is operated at extremely high temperatures. 

B.       FUTURE WORK 

Experimental verification of the straight pipe theory contained in Chapter III 

appears to be the best option for future work.   Our calculations show that it is very 

feasible to parametrically excite the fundamental longitudinal mode of a pipe containing 

sulfur hexafluoride.   Because theoretical quality factors are generally greater than the 

values found in practice, the threshold value may be significantly higher, which can be 
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handled by arranging the drive amplitude to be much greater than the predicted threshold 

value. Assuming the threshold is met, such an experiment would be important in order to 

probe the steady state of the parametric excitation because large amplitudes may occur. 

It would be interesting to compare the amplitude of a parametrically excited sound wave 

with one produced from direct excitation. The pipe should be detuned, for example, by 

having a constriction or enlargement at the center, so that the second harmonic is not 

directly excited. In the experiment of Adler and Breazeale, the steady state apparently 

occurred as a result of a lack of detuning, so that the fundamental drove the second 

harmonic through nonlinearities. This is probably why large amplitudes did not occur. 

Much of the work on the difficult problem of electromagnetic wave modulation of 

the temperature was cursory in order to provide a rough estimate of the feasibility. To 

have a sufficiently large amplitude of the temperature oscillations of a fluid such that the 

parametric threshold is met, there must be a relatively large time-averaged temperature 

difference between the maximum value in the fluid and the temperature of the walls, so 

that heat can quickly leave the system. Because the thermal conductivity of liquids is an 

order of magnitude greater than gases, liquids may prove amenable to temperature 

modulation. A complicating aspect is that a large temperature difference will cause 

convection to occur. This is advantageous because it augments the heat flow, but 

disadvantageous because it will lower the quality factor of the acoustic mode. A model 

that accounts for heat convection in addition to heat conduction may prove whether or not 

parametric excitation by this type of temperature modulation is possible. 
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APPENDIX A.     PROPERTIES OF WATER AND SELECTED 
GASES 

Table 1 was compiled from data obtained from the CRC Handbook of Chemistry 

and Physics (Lide 1994), the National Institute of Standards and Technology (NIST) 

website, (Lemmon et al., 2000), and the Thermo Chemical Calculator available on the 

California Institute of Technology website. 

Gas 

Shear 
Viscosity 
(uPa-s) 

Density 
(kg/m3) 

P 

Sound 
speed 
(m/s) 

c 

Prandtl 
number 

Pr 

Ratio of 
specific 
heats 

7 

Constant 
pressure 
specific 

heat 
(J/kg-K) 

Thermal 
diffusivity 

(um2/s) 
a 

Air 18.62 1.1845 346.27 0.71465 1.4017 1003.37 21.79 

Ar 22.61 1.6329 321.59 0.66841 1.66667 521.56 20.69 

C02 14.83 1.8080 268.63 0.75946 1.29417 850.76 10.99 

He 19.79 0.16353 1016.4 0.68797 1.66667 5193.06 175.96 

SF6 15.33 5.9702 136.25 0.93083 1.09376 664.119 - 

Water 868.40 997.05 1496.7 5.7763 1.01056 4181.3 0.1509 

TJ ible 1.         Selected thermodynamic and fluid properties of water and various gases 
25° C and 1 atm. 
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Gas 

Shear 
Viscosity 
(uPa-s) 

M 

Density 
(kg/m3) 

P 

Sound 
speed 
(m/s) 

c 

Prandtl 
number 

Pr 

Ratio of 
specific 
heats 

Y 

Constant 
pressure 
specific 

heat 
(J/kg-K) 

Thermal 
diffusivity 

(um2/s) 
a 

Air 18.62 2.3676 346.27 0.713 1.40082 1003.37 11.04 

CO2 - 3.6344 267.85 - 1.29990 858.17 - 

He - 0.32691 1016.8 - 1.66667 5193.06 - 

SF6 - 11.94 136.25 - 1.09376 664.119 - 

Table 2. Selected thermodynamic and fluid properties of various gases at 25° C and 
2 arm. 

Gas 

Shear 
Viscosity 
(uPa-s) 

Density 
(kg/m3) 

P 

Sound 
speed 
(m/s) 

c 

Prandtl 
number 

Pr 

Ratio of 
specific 
heats 

y 

Constant 
pressure 
specific 

heat 
(J/kg-K) 

Cv 

Thermal 
diffusivity 

(um2/s) 
a 

Air 23.06 0.94577 386.9 0.70484 1.395 1011.3 32.71 

C02 17.96 1.4019 297.6 0.73899 1.260 921.87 17.34 

Table 3. Selected thermodynamic and fluid properties of various gases at 100° C 
and 1 arm. 
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APPENDIX B.     ELECTROMECHANICAL DRIVER 
DISPLACEMENT 

It is possible to obtain a rough estimate of the peak driver displacement by 

modeling an electrodynamic driver as a driven mass on a string. In general, the amplitude 

is 

max ja> Rn+jfom-s/®) 
(2.1) 

where F is the amplitude of the sinusoidal driving force, m is the driven mass, s is the 

stiffness constant, Rm is the mechanical resistance, and co is the angular frequency of the 

drive. 

In an electrodynamic loudspeaker, the radiating cone is driven by the current in a 

coil that moves in a constant magnetic field. The force, which produces motion of the 

radiating cone, is proportional to the magnetic field in the gap and the current in the coil, 

so the peak force is 

F = (B!)I, (2.2) 

where B is the magnetic field, / is the coil length, and / is the peak current in the coil. 

Using Ohm's Law, the peak current can be expressed asV2P/Z where P is the rms 

power rating and Z is the nominal impedance of the compression driver. The factor of 2 

is necessary to convert the rms power to a peak power. With this substitution, Eq. (2.2) 

becomes 
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F = Blff- (23) 

Using the values of the stiffness constant and the driver mass, it is possible to 

obtain a rough value for the maximum displacement of an electrodynamic driver. At high 

frequencies, the mechanical impedance approaches &m. Thus, if the mechanical 

resistance is small compared to this term, then Eq. (2.1) in the mass controlled region 

approaches F/(o2m. Similarly, at high frequencies the mechanical impedance 

approaches -s/(o. Assuming the mechanical resistance is negligible, Eq. (2.1) in the 

stiffness controlled region approaches FI s (i.e. Hooke's Law). At resonance, the 

mechanical impedance vanishes and the driver amplitude reaches its maximum value of 

F l<£>Rm. Figure B.l shows a typical resonance curve for a mass on a string as well as the 

approximations for the stiffness and mass controlled regions. 

It is also interesting to note that the equations approximating the behavior of the 

piston in the mass and stiffness controlled regions intersect at the resonant frequency of 

the driver. This is to be expected since at resonance am = s/co. Thus, the intersection of 

these curves must denote the resonant frequency since the mass and stiffness terms are 

equal. 
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Figure B.l.    Typical response of a driver compared to the behavior in the stiffness and 
mass controlled regions. The natural frequency is Cö0 = -Jslm . 
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APPENDIX C.     DRIVER SPECIFICATIONS 

Table 2 lists the Thiele-Small parameters that were used to estimate the maximum 

displacement of a given driver. The data was compiled from technical specification 

sheets available from the manufacturer or from direct consultation with the 

manufacturer's engineers. Figures C.l through C.6 are plots of the maximum 

displacement of each driver using the relationships in Appendix B and the data in Table 

2. 

JBL-2490H JBL-2450H EVX-150A 
Peerless 

SWR-315 
ACI SV-18 Rage-12 

Effective 
diameter 

(mm) 
76 49 318 257 390 260 

Nominal 
impedance" 

(O) 
8 6 8 8 8 8 

Power 
Rating (W) 

200 100 500 220 1000 200 

Frequency 
range (Hz) 

250-4k 500-23k 30-1.8k - - - 

Bl (T-m) 17 12.7 20.4 11.6 26.1 6.5 

Stiffness 
(N/m) 

47000 40800 3400 1820 3500 4310 

Driver mass 
(g) 

6.2 3.2 69 80 372 126 

Free air 
resonance 

(Hz) 
438 568 35.4 24 15.5 29 

xinax(mm) 
0.5 

phase plug 
installed 

0.5 
phase plug 

installed 
19.7 18 20 6.9 

Table 4. Thiele-Small parameters for various drivers. 
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Figure C.l.    Peak driver displacement for the JBL 2490H in the mass and stifmess 
controlled regions. 
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Figure C.3.    EVX-150A peak driver displacement in the mass controlled region. 
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Figure C.5.    SV-18 peak driver displacement in the mass controlled region. 
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Figure C.6.    Rage-12 peak driver displacement in the mass controlled region. 
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APPENDIX D.     VTS-100 ELECTRODYNAMIC SHAKER 

In addition to the electromechanical drivers described in Appendix C, we also 

considered the use of an electrodynamic shaker to generate the necessary length or height 

modulation. The performance of the VTS-100 is shown in Figures D.l and D.2. The 

maximum displacement produced by the VTS-100 is exceeded by all the other drivers 

compiled in Appendix C. The data contained in this appendix is provided for 

completeness. 
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